Video Understanding of Complex Human Activities

Michal Balazia

bichal.balazia@inria.fr

INRIA Sophia Antipolis – STARS team

Nice University Hospital - CoBTeK,

INRIA-STARS Research Team Video Understanding for Human Behavior Analysis

Objectives:

- to measure objectively human behaviors by recognizing their everyday activities, their emotion, eating habits and lifestyle,
- to improve and optimize the quality of life of people suffering from behavior disorders.

Method:

- Designing vision systems for the recognition of human activities
- Human behavior can be modeled by learning from a large number of data from a variety of sensors.

Applications:

- Safety & Health & Well-being (CoBTeK : Behavior Disorder)
- and many other applications (e.g. Sport)

People Tracking on MOT



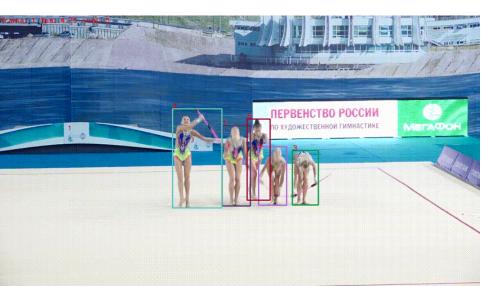
Foundation models:

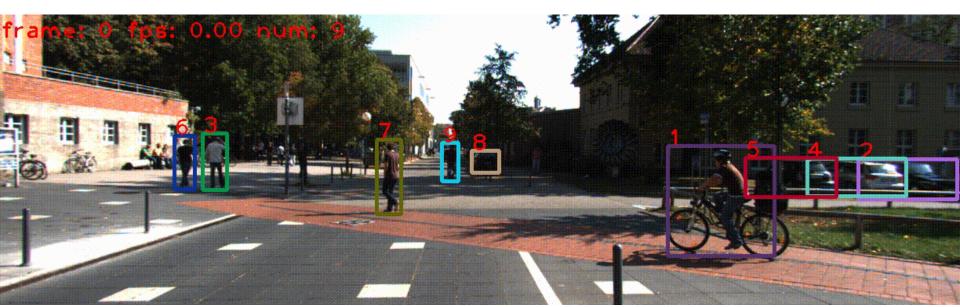
Grounded DINO + Segment Anything (SAM) + Track Anything (Cutie, DEVA, Massa)

People Tracking in real world situations

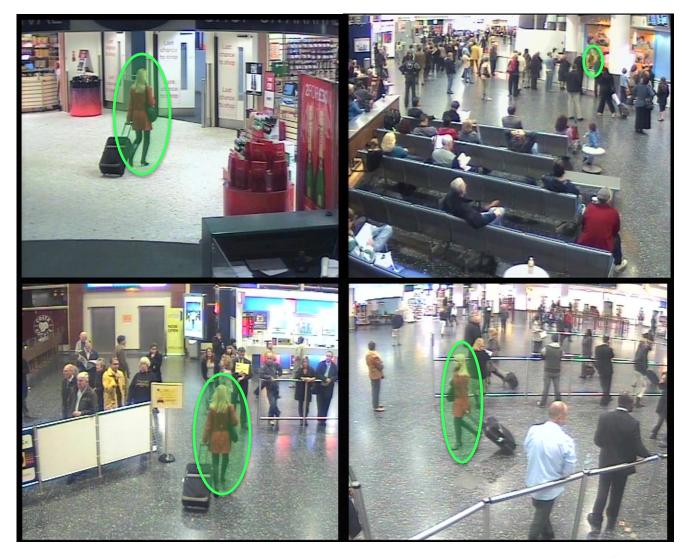
[Tomasz Stańczyk] MOT Multi-object tracking challenge: MOT17

People Tracking in real world situations





Person Re-identification



Person Re-Identification Learning image features (large datasets)

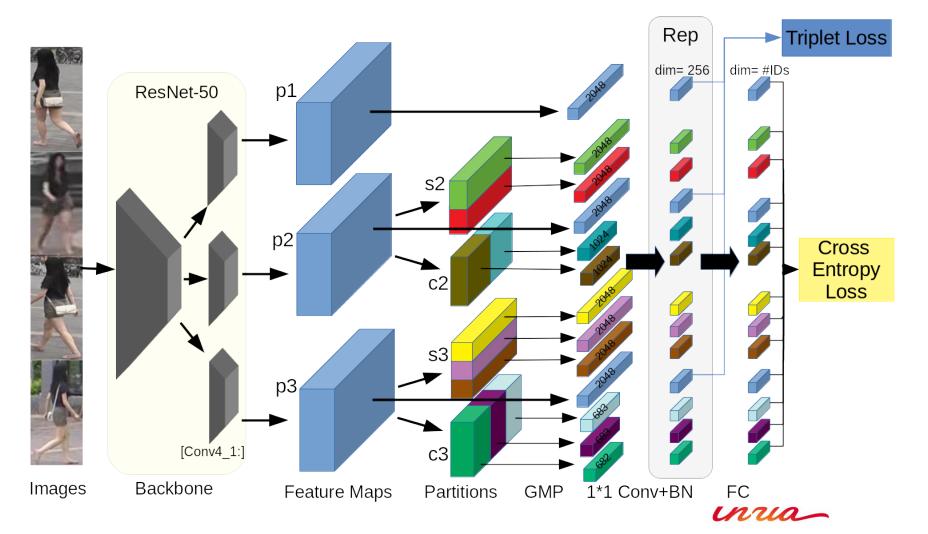
a: anchor

p: pseudo positive

n: pseudo negative

 $L_{triplet} = \sum_{i=1}^{P} \sum_{a=1}^{K} [\max_{p=1,...,K} \|\mathbf{a_i} - \mathbf{p_i}\|_2 - \min_{\substack{n=1,...,K \ j=1,...,P}} \|\mathbf{a_i} - \mathbf{n_j}\|_2 + lpha]_+$ positive

General Architecture of SCR: Spatial and Channel partition CNN Representations:



Person Re-Identification Results on Market-1501

[Hao Chen, PAMI22-24]

Qualitative results

Success cases

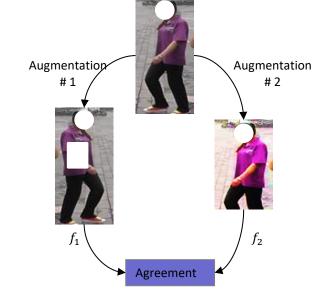
Failure cases

High accuracy, but SCR (ours) requires large amount of labeled training data

- -> unsupervised learning
- -> domain transfer
- -> life long (continuous) learning

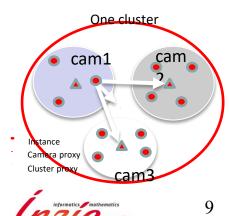
Person Re-identification Self-Supervised (Contrastive) Learning

- 1. Add data augmentation (perturbation) to create a positive pair
- 2. Maximize the representation similarity between the positive pair



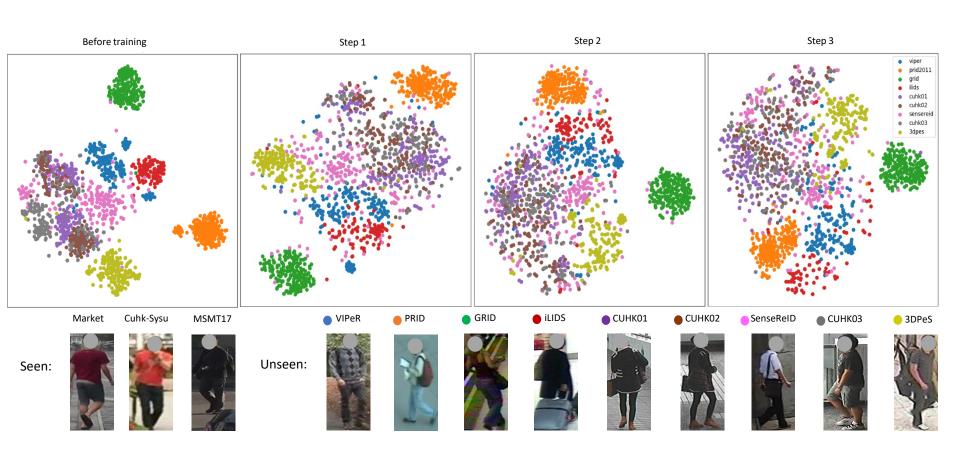
A model representation can be invariant/resilient to perturbations.

$$\mathcal{L}_{vi} = \mathbb{E}[\log\left(1 + \frac{\sum_{i=1}^{K} \exp\left(sim(f'_{new}, k_i)/\tau\right)}{\exp\left(sim(f, f_{pos})/\tau\right)}\right)]$$



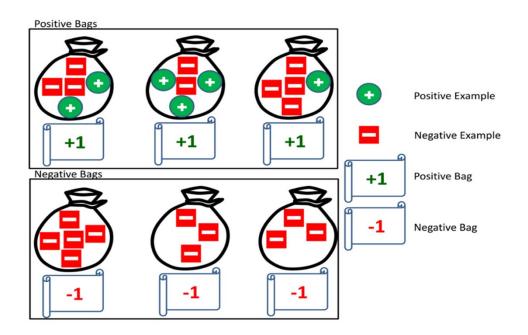
Lifelong (continuous) Domain Adaptation

Dataset Visualization



Weakly-supervised Video Anomaly Detection

[Snehashis Majhi]



MIL [Multiple Instance Learning] loss = 1 - (max_abnormal - max_normal)

Weakly-supervised Video Anomaly Detection

[Snehashis Majhi]

Challenges

• Lack of temporally annotated videos.

[Supervised]
Temporal Annotations

Video-level Annotations

[Weakly Supervised]

• Sparsity of Anomaly

• Human Centric fine-grained Anomalies

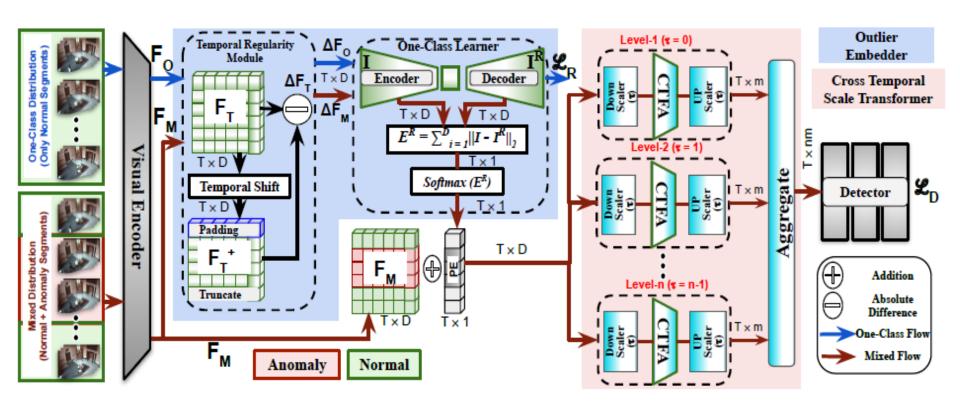
• Long and Short Anomalies

Short

Weakly-supervised Video Anomaly Detection

Approach 1 : OE-CTST

Outlier-Embedded Cross Temporal Scale Transformer



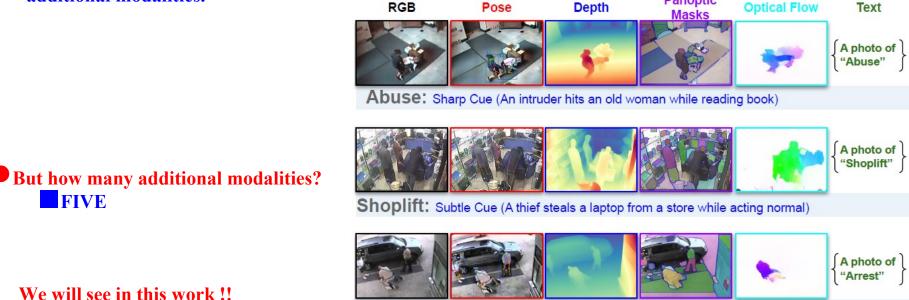
Temporal pseudo labels: start and end of events

A Poly-modal Inductor for Weaklysupervised Video Anomaly Detection

RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like shoplifting and visually similar normal events.

Towards robust complex real-world anomaly detection, it is essential to augment RGB with

additional modalities.



(a) Complex real-world anomalies with multi-modal saliencies

Arrest: Subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

Activity Recognition for Daily-living activities

Web and movies datasets:

(Kinetics, UCF101, ActivityNet,...)

- Large number of classes
- High inter-class variation
- Camera motion
- Different environments
- Short actions

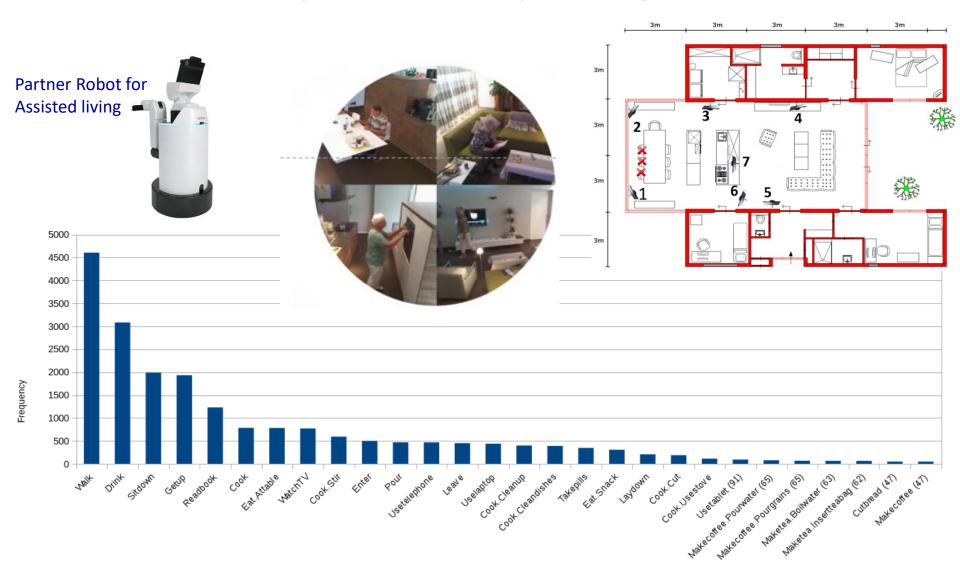
Different challenges compared to Fine-grained video datasets:

(Toyota smart home, Dahlia, NTU,...)

- Real-time recognition
- High intra-class variation
- Low inter-class variation
- Same environment, background
- Long and Composed actions

Need to model spatio-temporal relations

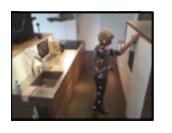
Toyota Smart-Home Large scale daily living dataset

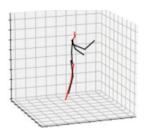


Toyota Smart-Home Large scale daily living dataset

Privileged Modalities

Different input modalities: RGB based and others: Audio, Text, Bio Signals (EEG, ECG, EDA, HR) ...





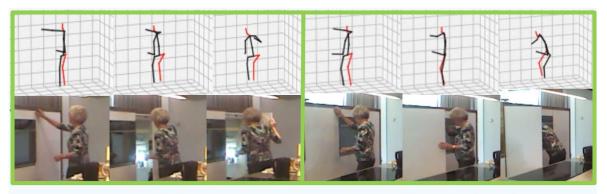
RGB

Depth

Optical Flow

2D/3D skeleton

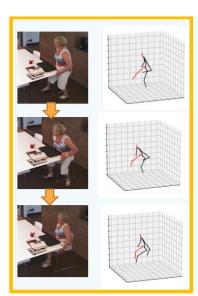
Complementary Nature: RGB vs skeleton



Open fridge

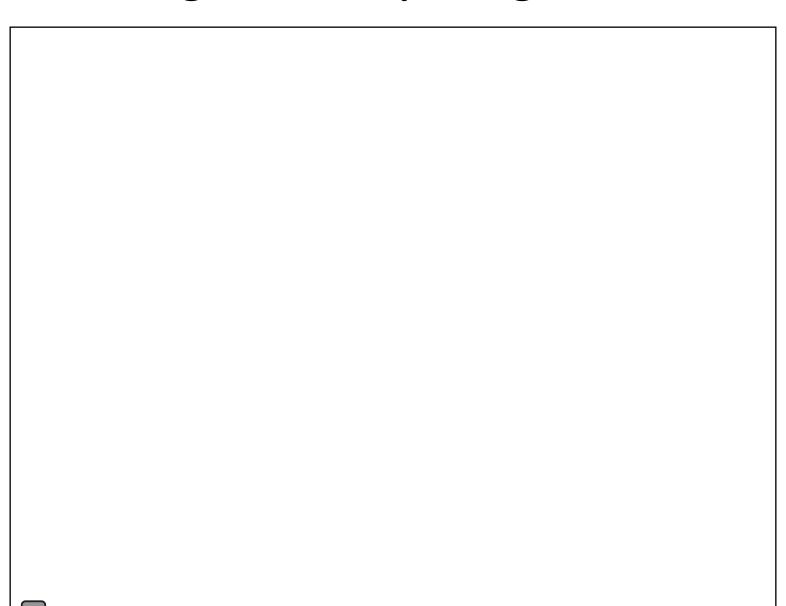
Open cupboard

Filtering the noisy appearance patterns, distractors Help capturing the body motion



Sit down

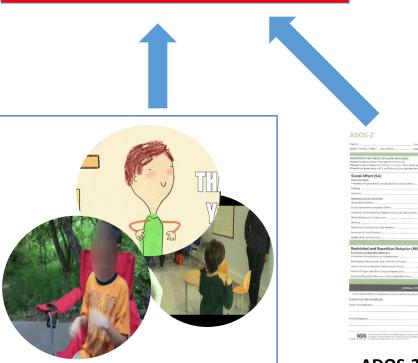
Toyota Smart-Home Large scale daily living dataset



Analysis of human interactions for Autism Spectrum Disorder (ASD) [Abid Ali]

ASD: Lifelong Neurodevelopmental disorder

- Deficit in attention, reciprocal interactions, Communications
- Stereotypies restrictive and repetitive behaviors & interests



Semi-automated ASD Analysis

Coarse-interactive Activity Recognition [Dyadic interactions] (by Abid Ali Khan)

Tight interactions

- Proper symmetry & synchronization
- Physical contact
- Short activities
- Minimal mobility

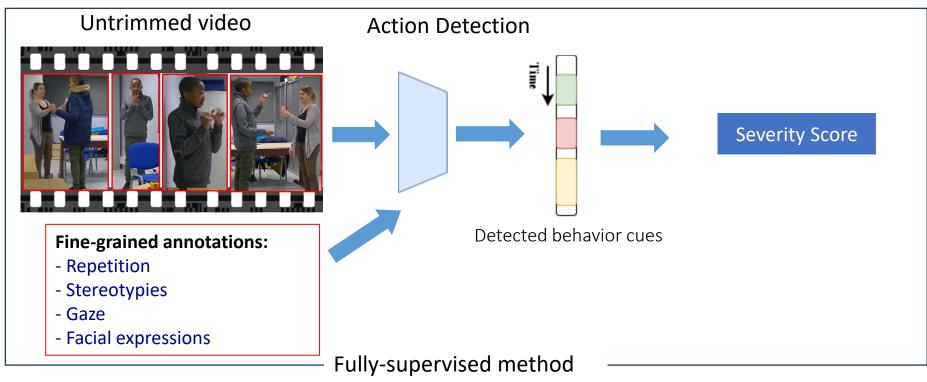
Conversational interactions

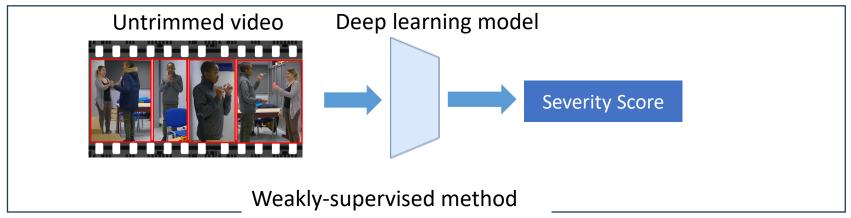
- No mobility
- Shot from front-facing camera
- Activities → talking, eye-gaze aversion

Loose interactions

- Complex mobility
- Asynchronous & asymmetrical
- Without direct physical contact
- More than 2 min long actions

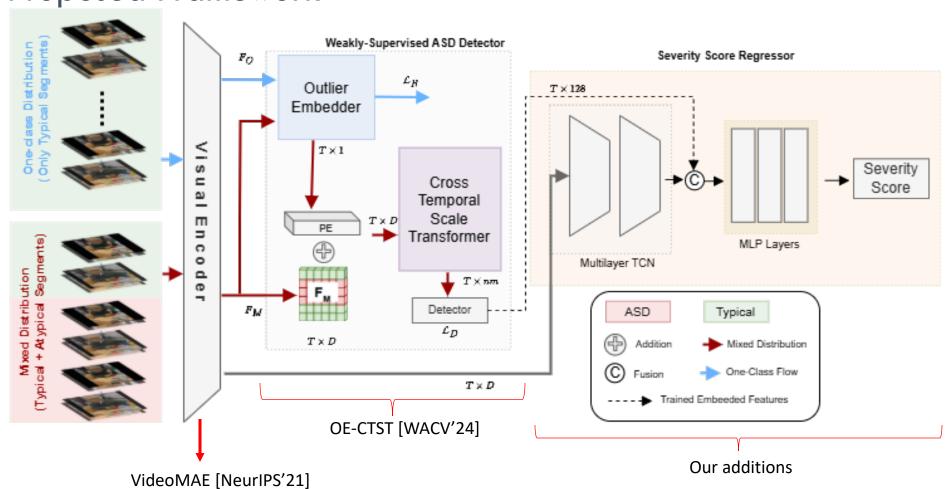
Ali et al. "Loose Social-Interaction Recognition in Real-world Therapy Scenarios", WACV'2025





Abid, et al. "Weakly-supervised Autism Severity Assessment in Long Videos" CBMI'24

Proposed Framework



Dataset and ASD scoring

RESTRICTED AND REPETITIVE BEHAVIOR (RRB)	Module	
Restricted and Repetitive Behaviors		
Intonation of Vocalizations or Verbalizations	(A-3)	2
Unusual Sensory Interest in Play Material/Person	(D-1)	0
Hand and Finger and Other Complex Mannerisms	(D-2)	3
Unusually Repetitive Interests or Stereotyped Behaviors	(D-4)	1

Severity	No. of hour-long	No. of segmented	Train/Test	
Levels	Videos	modules/long video		
No-autism	14	35	27/8	
Weak	6	19	16/3	
Moderate	20	52	40/12	
High	35	110	87/23	

Dataset

Summary and Limitations

Summary

- Weakly-supervised way → severity score estimation.
- Estimate overall autism score.
- Discover new gestures biomarkers for autism.

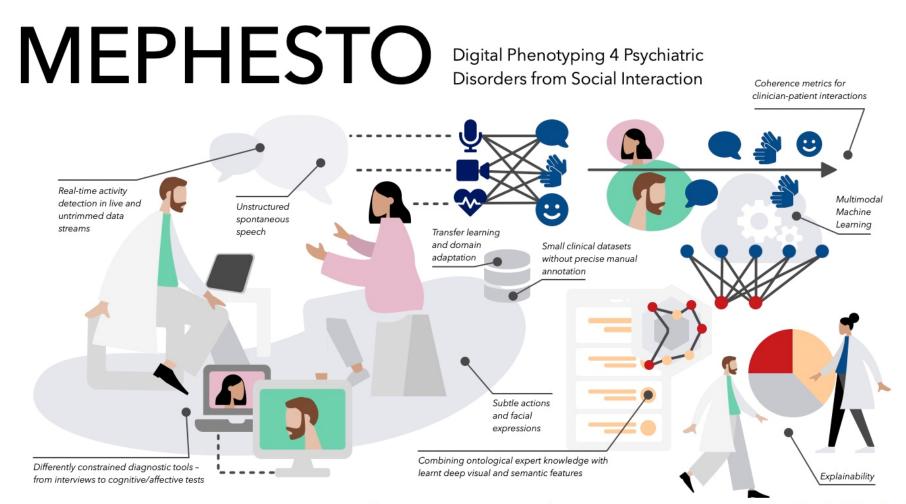
Limitations

- Only overall severity score
- Dataset bias → high severity
- Fine-grained complex biomarkers → facial expressions, eye-gaze, emotions

Perspective for autism severity score

- Severity analysis → whole dataset
- Per module severity score analysis
- Design more robust models to discover novel biomarkers responsible for autism.

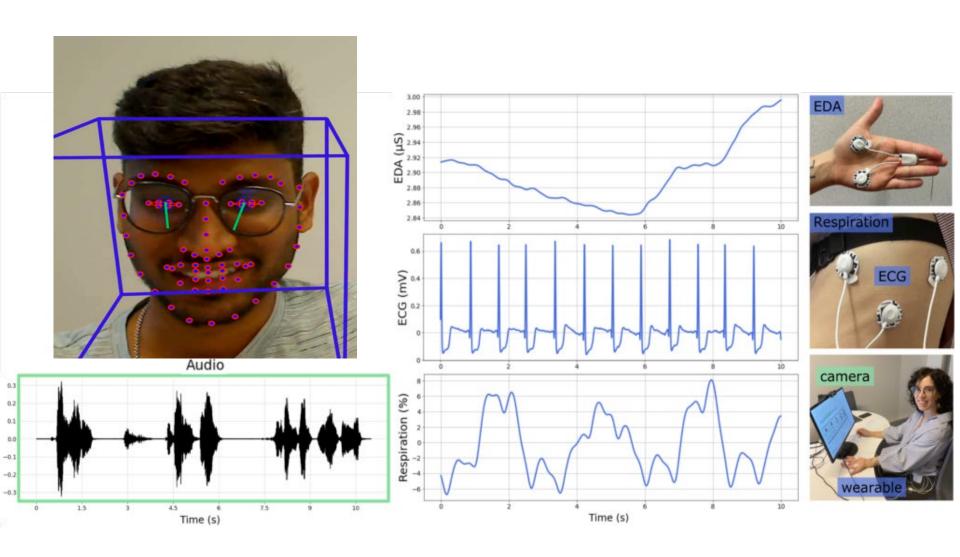
Digital Phenotyping for Psychiatric Disorders from Social Interaction: audiovisual + physiological



DFKI, COS | inria, SEMAGRAMME | inria, STARS

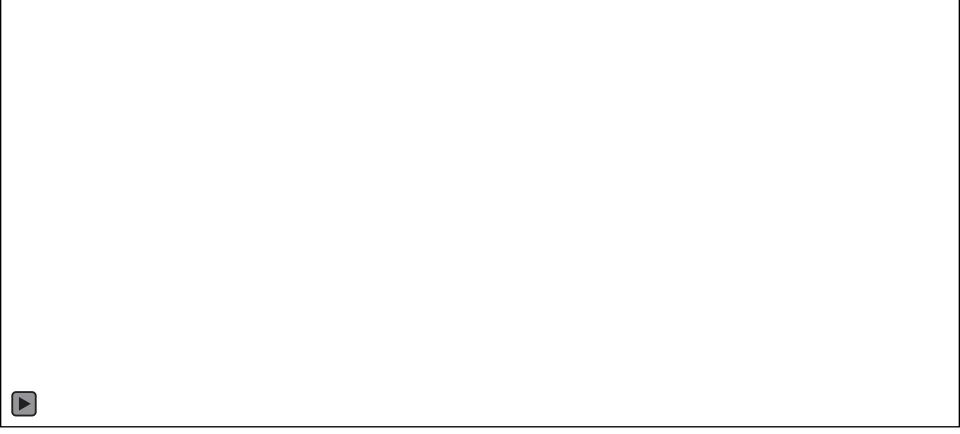
Emotion Recognition : Facial Expression Recognition (by Valeriya Strizhkova)

Characterizing Emotion using Facial Motion and Physiological signals



Emotion Recognition: Facial Expression Recognition

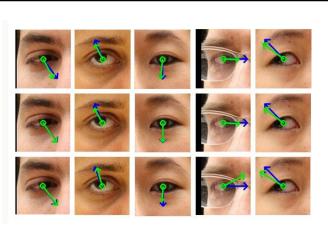
Characterizing Emotion using Facial Motion and Physiological signals



Emotion Recognition: gaze estimation

Characterization of gaze (attention) during speech: case of schizophrenia (rupture of content).

Green dot: eye tracker



Multimodal Recognition of Human Interactions

Characterization of emotion: with Video (Gesture, gaze) + Bio-signals (EDA, ECG) case of Schizophrenia, Depression, Bipolar, Post-Traumatic Stress Disorder.

Conclusion

A **global framework** for building real-time video understanding systems:

- Activity Monitoring Systems to measure levels of everyday activities: from handcrafted to (un)supervised learned models of activity
- Robust for long term video monitoring
- Online and real-time recognition with limited user interaction during training

Perspectives:

- View-point invariant Real-world settings
- Generate totally unsupervised models
- Generic semantic activity models (cross scenes), Adaptive learning
- Use finer features as input for the algorithm (head, posture, facial, hand, gesture...)
- More semantics, emotion, mental states.
- Multi-modalities (e.g. speech)
- Reaction to Stimulation : Serious Games

