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Objectives:
• to measure objectively human behaviors by recognizing their everyday 

activities, their emotion, eating habits and lifestyle, 
• to improve and optimize the quality of life of people suffering from behavior 

disorders.

Method: 
• Designing vision systems for the recognition of human activities 
• Human behavior can be modeled by learning from a large number of data 

from a variety of sensors.

Applications : 

• Safety & Health & Well-being (CoBTeK : Behavior Disorder)

• and many other applications (e.g. Sport)

INRIA-STARS Research Team 
Video Understanding for Human Behavior Analysis



People Tracking on MOT

Foundation models:
Grounded DINO + Segment Anything (SAM) + Track Anything (Cutie, DEVA, Massa)






People Tracking in real world situations
[Tomasz Stańczyk] MOT Multi-object tracking challenge:  MOT17



People Tracking in real world situations



6

Person Re-identification



7Person Re-Identification
 Learning image features (large datasets)

General Architecture of SCR: Spatial and Channel partition CNN Representations :

a: anchor
p: pseudo positive
n: pseudo negative



8Person Re-Identification   [Hao Chen, PAMI22-24]
 Results on Market-1501

 Success cases 

 Failure cases 

Qualitative results

High accuracy, but SCR (ours) requires 
large amount of labeled training data 
-> unsupervised learning 
-> domain transfer
-> life long (continuous) learning
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Person Re-identification 
Self-Supervised (Contrastive) Learning

1. Add data augmentation (perturbation) to 
create a positive pair

2. Maximize the representation similarity 
between the positive pair

A model representation can be 
invariant/resilient to perturbations.

Agreement

𝑓𝑓1 𝑓𝑓2

Augmentation
# 2

Augmentation
# 1
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Dataset Visualization
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Before training Step 1 Step 2 Step 3

Market Cuhk-Sysu MSMT17 VIPeR PRID GRID iLIDS CUHK01 CUHK02 SenseReID CUHK03 3DPeS

Seen: Unseen:



Human Action DetectionLecture 7 Rui Dai

Weakly-supervised
Video Anomaly Detection

[Snehashis Majhi]

MIL [Multiple Instance Learning] loss = 1 – ( max_abnormal – max_normal )



Challenges

Video-level Annotations 
[Weakly Supervised] 

[Supervised] 
Temporal Annotations

● Lack of temporally annotated videos.

● Sparsity of Anomaly 

● Human Centric fine-grained Anomalies 

● Long and Short Anomalies

Long Short

Weakly-supervised Video Anomaly Detection 
[Snehashis Majhi]
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Approach 1 : OE-CTST
Outlier-Embedded Cross Temporal Scale Transformer

Weakly-supervised Video Anomaly Detection

Temporal pseudo labels: start and end of events
13

Multi Instance Learning: MIL loss



A Poly-modal Inductor for Weakly- 
supervised Video Anomaly Detection
●RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like 

shoplifting and  visually similar normal events.

●Towards robust complex real-world anomaly detection, it is essential to augment RGB with 
additional modalities.

●But how many additional modalities?■FIVE

We will see in this work !!



Activity Recognition for Daily-living activities

Web and movies datasets: 
(Kinetics, UCF101, ActivityNet,… )
• Large number of classes
• High inter-class variation
• Camera motion
• Different environments
• Short actions

Different challenges compared to
Fine-grained video datasets: 
(Toyota smart home, Dahlia, NTU,…)  
• Real-time recognition
• High intra-class variation
• Low inter-class variation
• Same environment, background
• Long and Composed actions
Need to model spatio-temporal relations



Toyota Smart-Home 
Large scale daily living dataset

Partner Robot for
Assisted living



Toyota Smart-Home 
Large scale daily living dataset
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Privileged Modalities

Sit down
Filtering the noisy appearance patterns, distractors
Help capturing the body motion

Complementary Nature: RGB vs skeleton

RGB Depth Optical Flow 2D/3D skeleton

Different input modalities : RGB based and others: Audio, Text, Bio Signals (EEG, 
ECG, EDA, HR) …



Toyota Smart-Home 
Large scale daily living dataset






Action Understanding Models

Detect/recognize ASD behaviors

Semi-automated ASD Analysis

ADOS-2 Scores

Analysis of human interactions 
for Autism Spectrum Disorder (ASD)
[Abid Ali]

ASD : Lifelong  Neurodevelopmental 
disorder

• Deficit in attention, reciprocal 
interactions, Communications

• Stereotypies -  restrictive and 
repetitive behaviors & interests 



21 2.3.1 Coarse-interactive Activity Recognition 

Coarse-interactive Activity Recognition 
[Dyadic interactions]        (by Abid Ali Khan)

Tight interactions
- Proper symmetry & synchronization
- Physical contact
- Short activities
- Minimal mobility

Conversational interactions
- No mobility
- Shot from front-facing camera
- Activities  talking, eye-gaze aversion

Loose interactions
- Complex mobility
- Asynchronous & asymmetrical
- Without direct physical contact
- More than 2 min long actions 

Ali et al. “Loose Social-Interaction Recognition in Real-world Therapy Scenarios”, WACV’2025



Autism Severity Score Assessment
Untrimmed video Action Detection

Fine-grained annotations:
- Repetition 
- Stereotypies
- Gaze
- Facial expressions

Severity Score

Detected behavior cues

Fully-supervised method

Severity Score

Deep learning modelUntrimmed video

Weakly-supervised method
Abid, et al. “Weakly-supervised Autism Severity Assessment in Long Videos” CBMI’24



Proposed Framework

OE-CTST [WACV’24]

VideoMAE [NeurIPS’21]
Our additions

Autism Severity Score Assessment



Dataset and ASD scoring

Module score

Dataset

Autism Severity Score Assessment

2
0
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Summary and Limitations

Summary
- Weakly-supervised way  severity score estimation.
- Estimate overall autism score.
- Discover new gestures biomarkers for autism.

Limitations
- Only overall severity score
- Dataset bias  high severity
- Fine-grained complex biomarkers  facial expressions, eye-gaze, emotions

Perspective for autism severity score
- Severity analysis  whole dataset
- Per module severity score analysis
- Design more robust models to discover novel biomarkers responsible for autism.

Autism Severity Score Assessment



Digital Phenotyping for Psychiatric Disorders
from Social Interaction : audiovisual + physiological



Characterizing Emotion using Facial Motion and Physiological signals

Emotion Recognition : Facial Expression Recognition
(by Valeriya Strizhkova) 



Characterizing Emotion using Facial Motion and Physiological signals

Emotion Recognition : Facial Expression Recognition 






Characterization of gaze (attention) during speech: case of schizophrenia 
(rupture of content). 

Emotion Recognition : gaze estimation 

Green dot: eye tracker






Characterization of emotion: with Video (Gesture, gaze) + Bio-signals (EDA, ECG)
case of Schizophrenia, Depression, Bipolar, Post-Traumatic Stress Disorder.

Multimodal Recognition of Human Interactions

Clinician Patient

Bio-signals






Conclusion

A global framework for building real-time video understanding systems:
• Activity Monitoring Systems to measure levels of everyday activities: from handcrafted 

to (un)supervised learned models of activity
• Robust for long term video monitoring

• Online and real-time recognition with limited user interaction during training

 Perspectives:
• View-point invariant - Real-world settings
• Generate totally unsupervised models
• Generic semantic activity models (cross scenes), Adaptive learning
• Use finer features as input for the algorithm (head, posture, facial, hand, gesture…)
• More semantics, emotion, mental states.
• Multi-modalities (e.g. speech)
• Reaction to Stimulation : Serious Games
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