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Video Understanding for Human Behavior Analysis

Objectives:

» to measure objectively human behaviors by recognizing their everyday
activities, their emotion, eating habits and lifestyle,

« to improve and optimize the quality of life of people suffering from behavior
disorders.

Method:
« Designing vision systems for the recognition of human activities

« Human behavior can be modeled by learning from a large number of data
from a variety of sensors.

Applications :
« Safety & Health & Well-being (CoBTeK : Behavior Disorder)

« and many other applications (e.g. Sport)
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People Tracking on MOT
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Foundation models:
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Grounded DINO + Segment Anything (SAM) + Track Anything (Cutie, DEVA, Massa)







People Tracking in real world situations

[Tomasz Stannczyk] MOT Multi-object tracking challenge: MOT17




People Tracking in real world situations
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Person Re-identification
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Person Re-ldentification
Results on Market-1501

Qualitative results

e Success cases

. Failure cases

High accuracy, but SCR (ours) requires
large amount of labeled training data
-> unsupervised learning

-> domain transfer

-> life long (continuous) learning

[Hao Chen, PAMI22-24]
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Person Re-identification
Self-Supervised (Contrastive) Learning
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2. Maximize the representation similarity
between the positive pair

A model representation can be
invariant/resilient to perturbations.
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Lifelong (continuous) Domain Adaptation

Dataset Visualization

Before training Step 1 Step 2
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Weakly-supervised

Video Anomaly Detection
[Snehashis Majhi]

o Positive Example
[E |

Positive Bag
‘ ‘ ‘ -1 NNNNN .
[

MIL [Multiple Instance Learning] loss = 1 — ( max_abnormal — max_normal )




Weakly-supervised Video Anomaly Detection
[Snehashis Majhi]

Challenges

e Lack of temporally annotated videos. e Human Centric fine-grained Anomalies

[Supervised]
Temporal Annotations

Video-level Annotations
[Weakly Supervised]

e Sparsity of Anomaly °




Weakly-supervised Video Anomaly Detection

Approach 1 : OE-CTST

Outlier-Embedded Cross Temporal Scale Transformer
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A Poly-modal Inductor for Weakly-
supervised Video Anomaly Detection

O®RGB only features are not sufficiently distinctive enough to distinguish complex anomalies like
shoplifting and visually similar normal events.

@ Towards robust complex real-world anomaly detection, it is essential to augment RGB with

additional modalities. Fanoplic

Text

A photo of
% “Abuse”

Pose Depth

pl e {Asir::;tl?ﬁc’f}
@ But how many additional modalities? __
HrIvVE
A photo of
{“AF:rest” }

We will see in this work !! b CE——
Arrest: subtle & Sharp Cue (First, policemen argue with a suspect, then arrest him by force)

(a) Complex real-world anomalies with multi-modal saliencies



Activity Recognition for Daily-living activities

Answer phone Drive car

Web and movies datasets: R
(Kinetics, UCF101, ActivityNet,... ) [ l{'i e
» Large number of classes i
* High inter-class variation
« Camera motion

» Different environments

» Short actions _ Sit down

X

tﬂ w .
1

Get out of car Hand shake

Different challenges compared to
Fine-grained video datasets:

(Toyota smart home, Dahlia, NTU,...)
* Real-time recognition

* High intra-class variation

 Low inter-class variation

« Same environment, background
 Long and Composed actions

Need to model spatio-temporal relations




Partner Robot for .
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Toyota Smart-Home
Large scale daily living dataset
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Toyota Smart-Home
Large scale daily living dataset

i athematics






Privileged Modalities

Different input modalities : RGB based and others: Audio, Text, Bio Signals (EEG,
ECG, EDA, HR) ...

RGB Depth Optical Flow 2D/3D skeleton

Complementary Nature: RGB vs skeleton

Open fridge Open cupboard
Filtering the noisy appearance patterns, distractors

Sit down

Help capturing the body motion
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Toyota Smart-Home
Large scale daily living dataset







Analysis of human interactions

for Autism Spectrum Disorder (ASD)
[Abid Ali]

Semi-automated ASD Analysis

ASD : Lifelong Neurodevelopmental
disorder

« Deficit in attention, reciprocal
interactions, Communications

« Stereotypies - restrictive and
repetitive behaviors & interests

ADOS-2 Scores
Detect/recognize ASD behaviors

Action Understanding Models




Coarse-interactive Activity Recognition
[Dyadic interactions] (by Abid Ali Khan)
LI — LB

Tight interactions Conversational interactions
Proper symmetry & synchronization - No mobility
Physical contact - Shot from front-facing camera
Short activities - Activities = talking, eye-gaze aversion

Minimal mobility

Loose interactions
Complex mobility
Asynchronous & asymmetrical
Without direct physical contact
More than 2 min long actions

Ali et al. “Loose Social-Interaction Recognition in Real-world Therapy Scenarios”, WACV’2025



Autism Severity Score Assessment

Untrimmed video Action Detection
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Fine-grained annotations:
- Repetition

- Stereotypies

- Gaze

- Facial expressions

Fully-supervised method

Untrimmed video Deep learning model
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Weakly-supervised method

Abid, et al. “Weakly-supervised Autism Severity Assessment in Long Videos” CBMI'24



Autism Severity Score Assessment

Proposed Framework

Mixed Distribution
(Typica + Aypicd Seagments)

Severity
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OE-CTST [WACV’24]
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Autism Severity Score Assessment

Dataset and ASD scoring

RESTRICTED AND REPETITIVE BEHAVIOR (RRB)
Restricted and Repetitive Behaviors

Module score

Intonation of Vocalizations or Verbalizations (A-3) 2
Unusual Sensory Interest in Play Material/Person (D-1) 0
Hand and Finger and Other Complex Mannerisms (D-2) 3
Unusually Repetitive Interests or Stereotyped Behaviors (D-4) 1

Severity No. of hour-long No. of segmented

Train/Test
Levels Videos modules/long video

No-autism 14 35 27/8

Weak 6 19 16/3

Moderate 20 52 40/12

High 35 110 87/23

Dataset



Autism Severity Score Assessment

Summary and Limitations

Summary

- Weakly-supervised way = severity score estimation.
- Estimate overall autism score.

- Discover new gestures biomarkers for autism.

Limitations

- Only overall severity score

- Dataset bias = high severity

- Fine-grained complex biomarkers = facial expressions, eye-gaze, emotions

Perspective for autism severity score
- Severity analysis 2 whole dataset
- Per module severity score analysis
- Design more robust models to discover novel biomarkers responsible for autism.



Digital Phenotyping for Psychiatric Disorders
from Social Interaction : audiovisual + physiological

M E P H ES I O Digital Phenotyping 4 Psychiatric
Disorders from Social Interaction
clinician-patient interactions
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Emotion Recognition : Facial Expression Recognition
(by Valeriya Strizhkova)

Characterizing Emotion using Facial Motion and Physiological signals

EDA (uS)

ECG (mV)

Respiration (%)

: Time (5)




Emotion Recognition : Facial Expression Recognition

Characterizing Emotion using Facial Motion and Physiological signals







Emotion Recognition : gaze estimation

Characterization of gaze (attention) during speech: case of schizophrenia

(rupture of content).
Green dot: eye tracker
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Multimodal Recognition of Human Interactions

Characterization of emotion: with Video (Gesture, gaze) + Bio-signals (EDA, ECG)
case of Schizophrenia, Depression, Bipolar, Post-Traumatic Stress Disorder.







Conclusion

A global framework for building real-time video understanding systems:

* Activity Monitoring Systems to measure levels of everyday activities: from handcrafted
to (un)supervised learned models of activity

* Robust for long term video monitoring

* Online and real-time recognition with limited user interaction during training

VIDEO AUDIO

Perspectives:

* View-point invariant - Real-world settings
* Generate totally unsupervised models g P AABR
e Generic semantic activity models (cross scenes), Adaptive learning Taa W i
* Use finer features as input for the algorithm (head, posture, facial, hand, gesture...)

* More semantics, emotion, mental states.
e Multi-modalities (e.g. speech)

* Reaction to Stimulation : Serious Games
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