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« Every methodological decision creating a
unique forking path (universe) is potentially

Impactful
« A group of the forking paths (universes)
’ creates a multiverse of potential analyses

ranging from the raw data to the outcome of
Finish & Statistical association

The Graden of Forking Paths
By Jorge Luis Borger
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The garden of forking paths in fMRI-based graph definition
(and its association with behavioral outcomes)
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— The forking paths
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i How to handle the forking paths?
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An active learning approach

a Preprocessing steps

nature communications
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Article | Open Access ‘ Published: 29 June 2022

A guided multiverse study of neuroimaging analyses

Jessica Dafflon J Pedro F. Da Costa, Frantisek Vasa, Ricardo Pio Monti, Danilo Bzdok, Peter J. Hellyer,

Federico Turkheimer, Jonathan Smallwood, Emily Jones & Robert Leech

Room for advancement, because:

1. The output of each pipeline or forking path must be a vector;

2. The predicted variable is single value observable;

3. There is only a static visualization of the multiverse of analysis results.
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Oldenburg Predicting a latent variable reflecting attitudes towards alcohol by

The forking paths
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Oldenburg Developing the search space that handles both brain-wide and region-
specific graph measures
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Oldenburg Integrating Structural Equation Modeling to predict a latent variable
Instead of an observable only

Latent variable

(semopy package,
https://pypi.org/project/semopy/)

Graph measure
region | acq 01
Graph measure
region 2 Latent variable acq_02
associated with
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Graph measure
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Results — The space and the exhaustive search
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Dimension 1
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Shiny App Demo: https://meteor-oldenburg.shinyapps.io/BrainSubstance/
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We extended the previously proposed active learning-based approach to aid the
Implementation of multiverse analysis by:

1. Developing a search space which can handle both vector and single value output
from each forking path;

2. Integrating Structural Equation Modeling to allow the prediction of a latent variable;
3. Visualizing the multiverse of analyses results in an interactive way.
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Discussion

App link:
https://meteor-oldenburg.shinyapps.io/BrainSubstance/

daniel.kristanto@uni-oldenburg.de

page 16 Approximating the multiverse of latent variable predictions by graph theory measures of the human connectome — An extended active learning
09.10.2023 approach (Daniel Kristanto — University of Oldenburg)




Carl von Ossietzky

Universitat
Oldenburg

page 17 Approximating the multiverse of latent variable predictions by graph theory measures of the human connectome — An extended active learning
09.10.2023 approach (Daniel Kristanto — University of Oldenburg)




Carl von Ossietzky

Universitat
Oldenburg

page 18
09.10.2023

IABCD Youth Alcohol Measures
(abcd_yam01)

aeq_section_qg01

)Alcohol helps a person relax, feel happy, feel less tense, and can keep a person's mind off of
mistakes at school or work.

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c | =="1"'

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeqg_section_qg02

lAlcohol can help how well a person gets along with others (makes people want to have fun
together).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c_| =="1'

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeq_section_qg03

lAlcohol can hurt how well a person gets along with others (makes people mean to others).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c | =="'1'

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeqg_section_g04

lAlcohol helps people think better and helps coordination (people understand things better;
can do things better).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c_| =="'1'

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeq_section_qg05

IAlcohol hurts how people think and it hurts their coordination (run into things, act silly, have
a hangover).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c | =="1'

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeq_section_g06

IAlcohol makes a person feel stronger and more powerful (easier to fight, speak in front of
others, stand up to others).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c | =="1"

Somewhat; 5 = Agree Strongly / tifb_alc_|

aeq_section_q07

lAlcohol can make people more careless or do things that could get them into trouble (do

things they feel bad about; do things they regret).

1 = Disagree Strongly; 2 = Disagree
Somewhat; 3 = Uncertain; 4 = Agree

'1' || tifb_alc_c_| =="1"

Somewhat; 5 = Agree Strongly / tifb_alc_|
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